STEM Consol Section Design

STEM Capsule – First Step

For the longest time I’ve been wanting to build an interactive spaceship console for my kids. My father had built one for me and my brother when we were kids. It has made some great memories (Growing up with a spaceship). This weekend I finally convinced my bother help me design what we are now calling the STEM Capsule.

The idea is to be able to make a full capsule out of 6 sections. While the full experience will be quite large, a single section is all that is need to have loads of fun. Or to compromise on size you can just use 3 sections for a half capsule that can be placed against a wall.

Cardboard STEM Capsule Section
To start, we made a section of the STEM Capsule out of cardboard.

Now that we know the dimensions are right, we will make this out of wood and paint it. Then over the next few months, well design modular console widgets to build up the capsules console. We plan to have TangibleTEC sponsor the development and cost of this awesome project.

Adaptive Universal Remote

Adaptive Universal Remote

AKA Universal Meagbutton Remote MK III

I finally was able to make another revision of the Universal Megabutton Remote. My brother-in-law Jacob has been insisting for some time for me to upgrade his current box. Unfortunately the modification of the Logitech Harmony 200 didn’t hold up to constant use over 3 years. The USB extension cable I soldered on broke off and is now nearly impossible to repair and reprogram.

Harmony 200 remote USB pads torn off
Logitech Harmony 200 Remote Universal remote Hack Failed after 3 years

For the last few months I’ve been able to participate in a 3 person “Dream Team” to assist SupplyFrame in designing and building a universal remote for the non-profit United Cerebral Palsy of Los Angeles (UCPLA) This was part of their 2020 Hack-a-day Prize Contest. While we didn’t win any prizes the project was fully funded by SupplyFrame and their sponsor Digikey.

Delivered 3 Adaptive Universal Remotes

After a few months we came up with, designed, and built a fully open source adaptive universal remote based off the original design. You can get all source files, schematics, and CAD files at our Github Project. We didn’t originally want to go with this design, but in the long haul it was the best option with the limited time and resources we had. You can read about the entire process on Hackaday – 2020 HDP Dream Team UCPLA.

Growing up with a Space Ship

I was looking though my photos today, and I came across this one of a spaceship console my dad built for us kids. I remember it being one of the coolest things ever. It wasn’t even anything too fancy. Most of if was the face of an old stereo, that he wired up to make the knobs change the rate of blinking LED’s. Simple but so fun!

Makes me want to do something like this for my kids…

Smart Chicken Coop Light

When we first got chickens, we were trying all kinds of things we read online to get the most out of our laying hens. This project was one of those silly ideas to try and provide more “daylight” for the chickens year round, so they would lay eggs year round.

I through this together on a weekend. With these basic features in mind:

  • On and off schedule
  • Dimmable
  • Log temperature and Humidity
  • Battery Powered

I used the following parts to make it happen (mostly because I already had them available):

I’m not going to go into a detailed step by step process on how I put this together, but hopefully between the pictures and description you can get the idea.

I followed these general steps to assemble the hardware:

  1. Layout placement of parts in the lights
  2. Modify light fixture
    • Cut out battery holder
    • Join the two light together
    • Drill out holes for charge port, and mounting points
  3. Wire components and fit into lights
    • Solder the JST Jumper wire to the battery so it can be plugged straight into the Blynk board
    • Wire the MOSFET Source -> GND, LED Cathode -> MOSFET Drain, LED Anode -> Vin, MOSFET Gate -> Pin 5. (Circuit Demo)
    • Wire temperature sensor to the ADC pin
  4. Test, rinse, repeat
  5. Semi-permanently mount board and battery
  6. Close it all up and test

Arduino sketch and Blynk app source: https://github.com/RubenFixit/smart_light_sf_blynk

Megabutton Universal Remote Mk II+

The story behind the box

My brother-in-law, Jake, who happens to be the same age as me, was born with Cerebral palsy, and so has trouble using most everyday things. Even though he can’t speak or walk, he can get around by a sort of crawl and is good at using pictures in a binder to communicate. Though it is a bit of a guessing game.

Because of his situation he spends a lot of time watching TV shows and Movies. Whenever he wanted to watch something, he would have to find his binder, and someone willing to help, then play the guessing game until someone figured out what he wanted to watch. Then we’d have to find the DVD or VHS and put it on for him.

While most of us are willing to help, the whole process felt like it could be improved in some way. In addition to a binder for communicating, he had this tablet he could use called a Dynavox. It was large and old, and had some sort of IR capabilities. So I suggested that I could set it up to control the TV and the accessories. The only problem was that the Dynavox was unbelievably expensive and we were afraid it would be abused if left downstairs by the TV.

This is when I decided to build him a Megabutton Universal Remote. A simple durable box, that could be dedicated to controlling the entertainment center.

Mark I

Originally, their entertainment system was setup with an OLD CRT tv and a Wii. So my original design included a very simply 6 button universal remote, and a Will controller hacked to use 17 arcade buttons recessed to help prevent accidental button smashing.

The problem with that design was that the remote had to be programmed by pressing the volume and channel buttons in a proper sequence. Which was hard to remember. The problem was made worse by the fact that every time the batteries fell out, which happened more often when the battery door was lost, the remote would “forget” it’s program. Even after I put a different off the shelf universal remote, that was to remember it’s program between battery changes. The other problem was that there were limited things he could do on the Wii, and eventually the Wii controller I hacked, died.

Mark II

In the mean time I had discovered Plex, a self hosted media server that you could give access to friends and family, and had built up decent library of films me and my family owned.

When I showed my Plex media collection to my brother-in-law, he was so excited and sent me home with a box of movies to add to the collection. And he pointed out that the green box that he once loved and used so much, doesn’t work anymore with their upgraded entertainment center. It was time for a makeover.

In this new design I wanted to eliminate the most annoying problems he had with the old universal remote. Namely, settings being lost during a battery change, and tedious programming. Also I had to do something about that Wii controller.

This is when I decided to see if it may be possible to use a LG Harmony remote as the brains. I had a couple Harmony 200 remotes that I’ve used, and decided to open one up to see what I could find. One neat design I discovered on this remote is that it had bare copper test points for each trace on the button matrix. I was able to use these point to solder wires to the remote, since it is extremely difficult to solder wires right onto the button pad.

I also had to extend the IR led, the device LED’s, the USB port, and power lines to get it to fit in the box. I also thought it would be much easier to wire up the buttons by using a breadboard, and a button-to-test-point map. This way to configure a button in the box, I just had to look at the map to find out which two test points to plug the arcade buttons into. Another neat trick I discovered was, that if I put an LED inside one of these arcade buttons, it is visible enough to light up the buttons. Since this Harmony remote has 3 device buttons that light up, I was able to transfer this usability design to the arcade buttons.

I was even able to leverage the Wii window in the original design for the IR receiver on the Harmony 200. This way you can still have the “remote” learn codes from other remotes.

While these upgrades made the remote 1000 times better, it still has problems. For one, the wires for the buttons would sometimes fall out of the breadboard, and I’d have instruct people over the phone on how to service it. And for some reason, this remote seems to suffer from the 3 blinking lights, problem more often than I’d like. And the fix is to hold down the number 3 button, while replacing the batteries. And the breadboard design was a lifesaver here, allowing me to add that button to one of the small push buttons leftover from the old design (3 of them and an LED right above the volume up button).

LED RGB Stars

It is nearing Christmas time again.

Last year, I was in an apartment that was doing a Christmas Light Decoration Competition. The first three winner received a discount on the next months rent.

So I decided to order some RGB LED strips from banggood.com and make some really cool IR controllable stars.

The process was simple, if not a bit tedious…

First, I measured the length of the smallest section I could get from the LED strop. Then I made a pattern, on a regular sheet of paper, that would give me the angles and length for each point in the star.

Then, I traced the angles on a piece of cardboard, cut the star out, and placed the sections of LED strips, to make sure everything fit.

Here is a picture of the star, the template, the tools I used, and the LED strips in place.

Now all that is left is to solder all the LED segments together.
This was by far the most tedious part.

And here it is all lit up.

And, why only make one when I can make three!

So Here is our final apartment balcony.

Click to view on YouTube

Toothless Wings

Nothing much to this costume. I just cut up a black fleece blanket into the general shape of toothless wings. Then used a sowing machine to sow the ridges.

I was very lazy with the lights. I hot-glued some RGB LED strips to the wings, one on each side of the center ridge. Then wired the blue lights to a 9V battery plug. Then hot glued a Velcro cable tie to the back side of the wings to hold the 9V battery.